

PRODUCT INFORMATION **T4 DNA Polymerase**

#EP0062 500 U

Lot: _ Expiry Date: _

Concentration: 5 U/µL

Supplied with: 2 x 1 mL of 5X Reaction Buffer

Store at -20°C

In total 3 vials.

www.thermoscientific.com/onebio

Description

T4 DNA Polymerase, a template-depended DNA polymerase, catalyzes $5' \rightarrow 3'$ synthesis from primed single-stranded DNA. The enzyme has a $3' \rightarrow 5'$ exonuclease activity, but lacks $5' \rightarrow 3'$ exonuclease activity.

Applications

- Blunting of DNA ends: fill-in 5'-overhangs or/and removal of 3'-overhangs (1, 2), *see* protocol on back page.
- Blunting of PCR products with 3'-dA overhangs (6).
- Synthesis of labeled DNA probes by the replacement reaction (3).
- Oligonucleotide-directed site-specific mutagenesis (4).
- Ligation-independent cloning of PCR products (5).

Source

E.coli cells with a cloned gene 43 of bacteriophage T4.

Molecular Weight

104 kDa monomer.

Definition of Activity Unit

One unit of the enzyme catalyzes the incorporation of 10 nmol of deoxyribonucleotides into a polynucleotide fraction (adsorbed on DE-81) in 30 min at 37°C. Enzyme activity is assayed in the following mixture: 67 mM Tris-HCl (pH 8.8), 6.7 mM MgCl₂, 1 mM DTT, 16.7 mM (NH₄)₂SO₄, 0.2 mg/mL BSA, 0.033 mM of each dNTP, 0.4 MBq/mL [³H]-dTTP and 0.2 mM heat-denatured and nuclease-digested calf thymus DNA.

Rev.7

Storage Buffer

The enzyme is supplied in: 20 mM potassium phosphate (pH 7.5), 200 mM KCl, 2 mM DTT, and 50% (v/v) glycerol.

5X Reaction Buffer

335 mM Tris-HCl (pH 8.8 at 25°C), 33 mM MgCl₂, 5 mM DTT, 84 mM (NH₄)₂SO₄.

Inhibition and Inactivation

- Inhibitors: metal chelators, nucleotide analogs 2(*p-n*-butylanilino)-dATP, N²-(*p-n*-butylphenyl)-dGTP), SH-blocking compounds (7).
- Inactivated by heating at 75°C for 10 min.

Note

- The 3'→5' exonuclease activity of T4 DNA Polymerase is stronger on single-stranded DNA than on double-stranded DNA and greater (more than 200 times) than that of DNA Polymerase I, *E.coli* (1).
- Activity in Thermo Scientific buffers, % (in comparison to activity in assay buffer)

Buffers	Activity, %
for restriction enzymes:	
Thermo Scientific FastDigest, FastDigest® Green,	
O, R, 1X Thermo Scientific Tango, 2X Tango [™] ,	
BamHI, EcoRI, Ecl136II, KpnI, PacI, SacI	100
B, G	75-100
for PCR buffers:	
Taq buffer with KCI and Pfu buffer	50
Taq buffer with $(NH_4)_2SO_4$	100
RT buffers	100

CERTIFICATE OF ANALYSIS

Endodeoxyribonuclease Assay

No conversion of covalently closed circular DNA to nicked DNA was detected after incubation of 10 units of T4 DNA Polymerase with 1 µg of pUC19 DNA for 4 hours at 37°C.

Quality authorized by:

Jurgita Zilinskiene

(continued on back page)

Protocol for blunting of 5'- or 3'-overhangs

1. Prepare the following reaction mixture:

5X reaction buffer	4 μL
Linear DNA or PCR product	1 μg
dNTP Mix, 2 mM each (#R0241)	1 μL (0.1 mM final concentration)
T4 DNA Polymerase	0.2 μL (1 U)
Water, nuclease-free (#R0581)	to 20 µL

- 2. Mix thoroughly, spin briefly and incubate at 11°C for 20 min or at room temperature for 5 min.
- 3. Stop the reaction by heating at 75°C for 10 min.

References

- 1. Sambrook, J., Russell D.W., Molecular Cloning: A Laboratory Manual, the third edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2001.
- 2. Ausubel, F.M., et al., Current Protocols in Molecular Biology, vol. 1, John Wiley & Sons, Inc., Brooklyn, New York, 3.5.11-3.5.12, 1994-2004.
- 3. Challberg, M.D., Englund, P.T., Specific labeling of 3'-termini with T4 DNA polymerase, Methods Enzymol., 65, 39-43, 1980.
- 4. Kunkel, I.A., et al., Rapid and efficient site-specific mutagenesis without phenotypic selection, Methods Enzymol., 154, 367-382, 1987.
- 5. Haun, R.S., et al., Rapid, reliable ligation-independent cloning of PCR products using modified plasmid vectors, BioTechniques, 13, 515-518, 1992.
- 6. Wang, K., et al., A simple method using T4 DNA polymerase to clone polymerase chain reaction products, BioTechniques, 17, 236-238, 1994.
- 7. Eun, H-M., Enzymology Primer for Recombinant DNA Technology, Academic Press, Inc., 1996

PRODUCT USE LIMITATION

This product is developed, designed and sold exclusively *for research purposes and in vitro use only.* The product was not tested for use in diagnostics or for drug development, nor is it suitable for administration to humans or animals. Please refer to www.thermoscientific.com/onebio for Material Safety Data Sheet of the product.

© 2012 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries.